Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.20.21255810

ABSTRACT

ObjectiveThe Seraph(R)100 Microbind Affinity Blood Filter(R) (Seraph 100) is an extracorporeal medical countermeasure that can remove many pathogens from blood, including the SARS-CoV-2 virus. The aim of this study was to evaluate safety and efficacy of Seraph 100 treatment for severe coronavirus disease 2019 (COVID-19). DesignMulticenter retrospective observational cohort study. SettingIntensive care units across four of thirteen participating sites who have completed data extraction. PatientsCritically ill COVID-19 patients treated with Seraph 100 under an Emergency Use Authorization (n=53) and historical control patients who met criteria for treatment (n=46). InterventionExtracorporeal treatment with the Seraph 100 filter. Measurements and Main ResultsAt baseline, the median age was 61 years, 72.7% were male, and 59.6% required mechanical ventilation. The groups were matched in terms of sex, race/ethnicity, body mass index, APACHE II score, need for mechanical ventilation, and other COVID-19 treatments. However, patients in the Seraph 100 group were younger with a median age of 61 years (IQR 42-65) compared to controls who had a median age of 64 (IQR 56-68, p=0.036). The Seraph 100 group also had a lower median Charlson comorbidity index (2, IQR 0-3) compared to control patients (3, IQR 2-4, p=0.006). Mortality was lower in the Seraph 100 treated group compared to the historical controls (37.7% vs 67.4%, respectively, p=0.003). Multivariable logistic regression analysis yielded an odds ratio of 0.27 (95% confidence interval 0.09-0.79, p=0.016). Of the 53 patients treated with Seraph 100, only 1 patient experienced a serious adverse event (transient hypotension at the start of the treatment which required a brief period of vasopressor support). ConclusionsThese data suggest that broad spectrum, pathogen agnostic, extracorporeal blood purification technologies can be safely and effectively deployed to meet new pathogen threats as an adjunct to standard treatments while awaiting the development of directed pharmacologic therapies and/or vaccines.


Subject(s)
COVID-19
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-225156.v1

ABSTRACT

We report the first Human Immune System (HIS)-humanized mouse model (“DRAGA”: HLA-A2.HLA-DR4.Rag1KO.IL-2RgcKO.NOD) for COVID-19 research. This mouse is reconstituted with human cord blood-derived, HLA-matched hematopoietic stem cells. It engrafts human epi/endothelial cells expressing the human ACE2 receptor for SARS-CoV-2 and TMPRSS2 serine protease co-localized on lung epithelia. HIS-DRAGA mice sustained SARS-CoV-2 infection, showing deteriorated clinical condition, replicating virus in the lungs, and human-like lung immunopathology including T-cell infiltrates, microthrombi and pulmonary sequelae. Among T-cell infiltrates, lung-resident (CD103+) CD8+ T cells were sequestered in epithelial (CD326+) lung niches and secreted granzyme B and perforin, indicating cytotoxic potential. Infected mice also developed antibodies against the SARS-CoV-2 viral proteins. Hence, HIS-DRAGA mice showed unique advantages as a surrogate in vivo human model for studying SARS-CoV-2 immunopathology and for testing the safety and efficacy of candidate vaccines and therapeutics.


Subject(s)
Pulmonary Embolism , COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.14.20207050

ABSTRACT

With growing concern of persistent or multiple waves of SARS-CoV-2 in the United States, sensitive and specific SARS-CoV-2 antibody assays remain critical for community and hospital-based SARS-CoV-2 surveillance. Here, we describe the development and application of a multiplex microsphere-based immunoassay (MMIA) for COVD-19 antibody studies, utilizing serum samples from non-human primate SARS-CoV-2 infection models, an archived human sera bank and subjects enrolled at five U.S. military hospitals. The MMIA incorporates prefusion stabilized spike glycoprotein trimers of SARS-CoV-2, SARS-CoV-1, MERS-CoV, and the seasonal human coronaviruses HCoV-HKU1 and HCoV-OC43, into a multiplexing system that enables simultaneous measurement of off-target pre-existing cross-reactive antibodies. We report the sensitivity and specificity performances for this assay strategy at 98% sensitivity and 100% specificity for subject samples collected as early as 10 days after the onset of symptoms. In archival sera collected prior to 2019 and serum samples from subjects PCR negative for SARS-CoV-2, we detected seroprevalence of 72% and 98% for HCoV-HKU1 and HCoV-0C43, respectively. Requiring only 1.25 uL of sera, this approach permitted the simultaneous identification of SARS-CoV-2 seroconversion and polyclonal SARS-CoV-2 IgG antibody responses to SARS-CoV-1 and MERS-CoV, further demonstrating the presence of conserved epitopes in the spike glycoprotein of zoonotic betacoronaviruses. Application of this serology assay in observational studies with serum samples collected from subjects before and after SARS-CoV-2 infection will permit an investigation of the influences of HCoV-induced antibodies on COVID-19 clinical outcomes.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.19.251249

ABSTRACT

The current SARS-CoV-2 pandemic is accompanied by high morbidity and mortality rates, and there is a compelling need for effective vaccines and therapeutic agents to lessen the severity of COVID-19 disease. Appropriate animal models are essential for testing of vaccines and therapeutics and for mechanistic studies of infection and the host response. The Spike (S) protein of SARS-COV-2 has a high affinity for the human ACE2 receptor, which is expressed on multiple cell types including alveolar epithelial and vascular endothelial cells. Wild-type mice are not susceptible to developing coronavirus-mediated diseases. Accordingly, several human (h)ACE2 transgenic mouse models have been developed for coronavirus research. However, these mice have failed to closely mimic important aspects of the human immunopathological responses to SARS-CoV-2. We report herein that DRAGA (HLA-A2.HLA-DR4.Rag1KO.IL-2R{gamma}c KO.NOD) mice infused with human hematopoietic stem cells from cord blood reconstitute a fully functional human immune system, as well as engraft human epithelial and endothelial cells, sustain SARS-CoV-2 infection, and develop severe COVID-19-like symptoms. In pilot experiments, infected mice developed parenchymal and epithelial lung infiltrations with granzyme B+ and perforin+ CD8+ T cells and alveolar CD61+ microthrombi, mimicking human immunopathological responses to SARS-CoV-2. We propose the DRAGA mouse as a novel pre-clinical tool for studying COVID-19 immunopathology and human immune responses to SARS-CoV-2, including events leading to the cytokine storm and coagulopathies, as well as for testing of candidate vaccines and therapeutics.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Blood Coagulation Disorders , COVID-19
6.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-56281.v1

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome (ARDS) but it is unknown whether prone positioning improves outcomes in mechanically ventilated patients with moderate to severe ARDS due to COVID-19.METHODS: A cohort study at a New York City hospital at the peak of the early pandemic in the United States, under crisis conditions. The aim was to determine the benefit of prone positioning in mechanically ventilated patients with ARDS due to COVID-19. The primary outcome was in-hospital death. Secondary outcomes included changes in physiologic parameters. Fine-Gray competing risks models with stabilized inverse probability treatment weighting (sIPTW) were used to determine the effect of prone positioning on outcomes. In addition, linear mixed effects models (LMM) were used to assess changes in physiology with prone positioning.RESULTS: Out of 335 participants who were intubated and mechanically ventilated, 62 underwent prone positioning, 199 met prone positioning criteria and served as controls and 74 were excluded. The intervention and control groups were similar at baseline. In multivariate-adjusted competing risks models with sIPTW, prone positioning was significantly associated with reduced mortality (SHR 0.61, 95% CI 0.46-0.80, P < 0.005). Using LMM to evaluate the impact of positioning maneuvers on physiological parameters, the oxygenation-saturation index was significantly improved during days 1-3 (P < 0.01) whereas oxygenation-saturation index (OSI), oxygenation-index (OI) and arterial oxygen partial pressure to fractional inspired oxygen (PaO2:FiO2) were significantly improved during days 4-7 (P < 0.05 for all). CONCLUSIONS: Prone positioning in patients with moderate to severe ARDS due to COVID-19 is associated with reduced mortality and improved physiologic parameters. One in-hospital death could be averted for every eight patients treated. Replicating results and scaling the intervention are important, but prone positioning may represented an additional therapeutic option in patients with ARDS due to COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL